Crossbow injuries to the head are extremely rare [1–8]. Most documented cases are suicide attempts, often with fatal outcomes. We describe a 22-year-old man with a self-inflicted crossbow head injury who survived. The position of the arrow and the associated bone and soft-tissue abnormalities are shown using a 16-MDCT scanner and postprocessing reformations. We also present an overview of all reported cases of crossbow injuries to the brain.

Case Report

A 22-year-old man attempted to commit suicide by shooting an aluminum crossbow arrow through his mouth. The arrow entered the skull through the oral cavity and exited the skull near the vertex (Fig. 1A). When the mobile emergency medical team arrived, the patient was fully conscious but was blind in his right eye and complained of a left-sided hemiparesis. The patient immediately underwent surgery. The arrowhead was removed, and the shaft of the missile was extracted through the mouth. An external ventricular drain was inserted.

Postoperatively, the patient was transferred to the neurosurgical ICU. He developed sepsis and was treated with broad-spectrum antibiotics for 3 weeks. Intracranial hypertension was not observed. On postoperative day 15, the patient underwent a second surgical intervention because of a cerebrospinal fluid leak through the skull base and cranial vault was documented using a volume-rendering technique with virtual removal of the occipital bone.

The patient recovered amazingly well and was discharged from the neurosurgical ICU to the ward on day 20 with a right-sided hemianopsia and slight paresis of the left leg. On day 31, the patient was discharged from the hospital in stable condition.

Discussion

Crossbow injuries to the head are rare, with only a handful of cases reported in the literature [1–8] (Table 1). Most documented cases were self-inflicted injuries that often had fatal outcomes. Compared with firearm projectiles, aluminum crossbow arrows have a relatively low velocity (as fast as 58 m/sec), but their sharpness and kinetic energy are sufficient to cause penetrating skull injuries [2]. A study of the ballistics of experimental arrow wounds by Karger et al. [3] showed that the penetration mechanism of an arrow is distinct from that of a bullet, because of the extremely sharp cutting edge of the arrowhead. Because of the sharp force applied by arrows, injury is limited to the tissues that are directly incised by the blade of the arrowhead [3]. From both a patient treatment and a forensic point of view, the arrow should be left in situ and stabilized to limit motion in transport until the patient reaches surgery. The shaft of the arrow in situ appears to exert pressure on the wound, thus functioning as an incomplete tamponade. Because the tip of the sports arrow is...
Fig. 1.—22-year-old man with crossbow injury of head.

A, Left lateral photograph taken at patient's arrival in emergency department shows that crossbow arrow enters through mouth and exits skull near vertex. Patient has been intubated and ventilated, and his head has been immobilized.

B, Axial MDCT scan obtained through sellar region shows aluminum arrow (black arrow) in right optic canal. White arrow shows proximal part of right optic nerve near optic chiasm.

C, Axial MDCT scan obtained through centrum semiovale shows subarachnoid hemorrhage over right cerebral hemisphere and parenchymal hemorrhage (arrows) around arrow shaft.

D, Sagittal multiplanar MDCT reformation reveals entire trajectory of arrow shaft (arrows). Note that aluminum shaft is hollow.

E, Image obtained with volume-rendering technique after virtual removal of occipital bone shows vertical trajectory of arrow (arrows).
the same diameter as the shaft, these lesions can be survivable. In our patient, the trajectory of the crossbow arrow was slightly anterior to the cavernous sinus and lateral to the anterior cerebral arteries, which prevented fatal vascular injury. However, the right optic nerve was damaged and caused a permanent right-sided loss of vision.

MDCT is the technology of choice for acquiring CT data in a complex neurotrauma case. The increased spatial resolution allows for high-quality 3D postprocessing [9]. In this case, volume-rendered and multiplanar reformatted images provided clinically relevant information for the management of this complex neurotrauma. The reformatted images clearly depict the anatomic relationships and are much easier to interpret than hundreds of thin axial images, especially for nonradiologists. Postprocessing techniques also allow the radiologist and treating neurosurgeon to explore the findings in an interactive manner on a workstation and improve their preoperative evaluation of the patient.

In conclusion, crossbow injuries to the head are rare and pose a medical and surgical challenge. This case illustrates the potential of 3D images as aids in treating complex penetrating neurotrauma. With postprocessing, the total acquired scanning volume is represented on a few significant views with a high degree of accuracy, thereby accentuating the diagnostically relevant details and facilitating the planning of further therapy.

Reference

Table 1

<table>
<thead>
<tr>
<th>Source</th>
<th>Patient Age (yr)</th>
<th>Cause of Injury</th>
<th>Entry Point</th>
<th>Symptoms</th>
<th>Trajectory of Arrow</th>
<th>Surgery</th>
<th>Complications</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salam et al., 1990[7]</td>
<td>24</td>
<td>Unintentional</td>
<td>Right temporal lobe</td>
<td>GCS score, 3/15</td>
<td>Through right temporal lobe and occipital lobe</td>
<td>No</td>
<td>None</td>
<td>Almost full recovery</td>
</tr>
<tr>
<td>Downs et al., 1994[4]</td>
<td>—</td>
<td>Suicide</td>
<td>Right upper eyelid</td>
<td>Pulling at arrow</td>
<td>Through right frontal lobe and lateral ventricle, and right occipital lobe</td>
<td>No</td>
<td>NA</td>
<td>Death in 2 hr</td>
</tr>
<tr>
<td>2. Through lower lip and upper palate</td>
<td>GCS score, 3/15</td>
<td>2. Through base of right temporal lobe</td>
<td>No</td>
<td>NA</td>
<td>Death</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byard et al., 1999 [2]</td>
<td>18</td>
<td>Suicide</td>
<td>Between right ear and eye</td>
<td>GCS score, 3/15</td>
<td>Through right middle cranial fossa and diencephalon into left parietal lobe</td>
<td>No</td>
<td>NA</td>
<td>Death</td>
</tr>
<tr>
<td>Byard et al., 1999[2]</td>
<td>27</td>
<td>Suicide</td>
<td>Chin</td>
<td>NA</td>
<td>Through optic chiasm with damage to basal ganglia</td>
<td>No</td>
<td>NA</td>
<td>Death</td>
</tr>
<tr>
<td>Franklin and Lukan, 2002[1]</td>
<td>35</td>
<td>Attempted suicide</td>
<td>Posterior oral pharynx</td>
<td>GCS score, 7/15</td>
<td>Through ethmoid bone between the frontal lobes</td>
<td>Arrow removed</td>
<td>None</td>
<td>Answers to simple questions, decreased motor activity on the right, simple one-step commands on the left</td>
</tr>
<tr>
<td>Joly et al., 2002[8]</td>
<td>42</td>
<td>Attempted suicide</td>
<td>Chin</td>
<td>GCS score, 15/15</td>
<td>Through ethmoid bone and right optic nerve canal</td>
<td>Arrow removed through ethmoidal sinus</td>
<td>Sepsis</td>
<td>Full recovery</td>
</tr>
<tr>
<td>de Jongh et al., 2004</td>
<td>22</td>
<td>Attempted suicide</td>
<td>Upper palate</td>
<td>GCS score, 15/15, right hemianopia and left hemiparesis</td>
<td>Through ethmoidal sinus and right optic nerve canal</td>
<td>Arrow removed through ethmoidal sinus</td>
<td>Sepsis</td>
<td>Death</td>
</tr>
</tbody>
</table>

Note.—In all cases reported to date, the patients have been male. Dash indicates missing data. GCS = Glasgow Coma Scale, NA = not applicable.